Make success possible with our Latest and Unique AWS Certified Specialty MLS-C01 Practice Exam!
Name: AWS Certified Machine Learning - Specialty
Exam Code: MLS-C01
Certification: AWS Certified Specialty
Vendor: Amazon
Total Questions: 330
Last Updated: September 30, 2025
950 Satisfied Customers
Success is simply the result of the efforts you put into the preparation. We at Dumpsgroup wish to make that preparation a lot easier. The AWS Certified Machine Learning - Specialty MLS-C01 Practice Exam we offer is solely for best results. Our IT experts put in their blood and sweat into carefully selecting and compiling these unique Practice Questions. So, you can achieve your dreams of becoming a AWS Certified Specialty professional. Now is the time to press that big buy button and take the first step to a better and brighter future.
Passing the Amazon MLS-C01 exam is simpler if you have globally valid resources and Dumpsgroup provides you just that. Millions of customers come to us daily, leaving the platform happy and satisfied. Because we aim to provide you with AWS Certified Specialty Practice Questions aligned with the latest patterns of the AWS Certified Machine Learning - Specialty Exam. And not just that, our reliable customer services are 24 hours at your beck and call to support you in every way necessary. Order now to see the MLS-C01 Exam results you always desired.
You must have heard about candidates failing in a large quantity and perhaps tried yourself and fail to pass AWS Certified Machine Learning - Specialty. It is best to try Dumpsgroup’s MLS-C01 Practice Questions this time around. Dumpsgroup not only provides an authentic, valid, and accurate resource for your preparation. They simplified the training by dividing it into two different formats for ease and comfort. Now you can get the Amazon MLS-C01 in both PDF and Online Test Engine formats. Choose whichever or both to start your AWS Certified Specialty certification exam preparation.
Furthermore, Dumpsgroup gives a hefty percentage off on these Spoto MLS-C01 Practice Exam by applying a simple discount code; when the actual price is already so cheap. The updates for the first three months, from the date of your purchase, are FREE. Our esteemed customers cannot stop singing praises of our Amazon MLS-C01 Practice Questions. That is because we offer only the questions with the highest possibility of appearing in the actual exam. Download the free demo and see for yourself.
We know you have been struggling to compete with your colleagues in your workplace. That is why we provide the MLS-C01 Practice Questions to let you gain the upper hand that you always wanted. These questions and answers are a thorough guide in a simple and exam-like format! That makes understanding and excelling in your field way lot easier. Our aim is not just to help to pass the AWS Certified Specialty Exam but to make a Amazon professional out of you. For that purpose, our MLS-C01 Practice Exams are the best choice.
There are many resources available online for the preparation of the AWS Certified Machine Learning - Specialty Exam. But that does mean that all of them are reliable. When your future as a AWS Certified Specialty certified is at risk, you have got to think twice while choosing Amazon MLS-C01 Practice Questions. Dumpsgroup is not only a verified source of training material but has been in this business for years. In those years, we researched on MLS-C01 Practice Exam and came up with the best solution. So, you can trust that we know what we are doing. Moreover, we have joined hands with Amazon experts and professionals who are exceptional in their skills. And these experts approved our MLS-C01 Practice Questions for AWS Certified Machine Learning - Specialty preparation.
A. Alexa for Business
B. Amazon Connect
C. Amazon Lex
D. Amazon Poly
E. Amazon Comprehend
F. Amazon Transcribe
ANSWER : C,E,F
A. Call the CreateNotebookInstanceLifecycleConfig API operation
B. Create a new SageMaker notebook instance and mount the Amazon Elastic Block Store(Amazon EBS) volume from the original instance
C. Stop and then restart the SageMaker notebook instance
D. Call the UpdateNotebookInstanceLifecycleConfig API operation
ANSWER : C
A. Use AWS Data Pipeline to transform the data and Amazon RDS to run queries.
B. Use AWS Glue to catalogue the data and Amazon Athena to run queries.
C. Use AWS Batch to run ETL on the data and Amazon Aurora to run the queries.
D. Use AWS Lambda to transform the data and Amazon Kinesis Data Analytics to runqueries.
ANSWER : B
A. Use SageMaker Model Debugger to automatically debug the predictions, generate theexplanation, and attach the explanation report.
B. Use AWS Lambda to provide feature importance and partial dependence plots. Use theplots to generate and attach the explanation report.
C. Use SageMaker Clarify to generate the explanation report. Attach the report to thepredicted results.
D. Use custom Amazon Cloud Watch metrics to generate the explanation report. Attach thereport to the predicted results.
ANSWER : C
A. Use AWS Lambda to run a predefined SageMaker pipeline to perform thetransformations on each new dataset that arrives in the S3 bucket.
B. Run an AWS Step Functions step and a predefined SageMaker pipeline to perform thetransformations on each new dalaset that arrives in the S3 bucket
C. Use Apache Airflow to orchestrate a set of predefined transformations on each newdataset that arrives in the S3 bucket.
D. Configure Amazon EventBridge to run a predefined SageMaker pipeline to perform thetransformations when a new data is detected in the S3 bucket.
ANSWER : D
A. Use SageMaker Pipelines to create an automated workflow that extracts fresh data,trains the model, and deploys a new version of the model.
B. Configure SageMaker Model Monitor with an accuracy threshold to check for model drift.Initiate an Amazon CloudWatch alarm when the threshold is exceeded. Connect theworkflow in SageMaker Pipelines with the CloudWatch alarm to automatically initiateretraining.
C. Store the model predictions in Amazon S3 Create a daily SageMaker Processing jobthat reads the predictions from Amazon S3, checks for changes in model predictionaccuracy, and sends an email notification if a significant change is detected.
D. Rerun the steps in the Jupyter notebook that is hosted on SageMaker Studio notebooksto retrain the model and redeploy a new version of the model.
E. Export the training and deployment code from the SageMaker Studio notebooks into aPython script. Package the script into an Amazon Elastic Container Service (Amazon ECS)task that an AWS Lambda function can initiate.
ANSWER : A,B
A. Amazon SageMaker DeepAR forecasting algorithm
B. Amazon SageMaker XGBoost algorithm
C. Amazon SageMaker Latent Dirichlet Allocation (LDA) algorithm
D. A convolutional neural network (CNN) and ResNet
ANSWER : D
A. Replace On-Demand Instances with Spot Instances
B. Configure model auto scaling dynamically to adjust the number of instancesautomatically.
C. Replace CPU-based EC2 instances with GPU-based EC2 instances.
D. Use multiple training instances.
E. Use a pre-trained version of the model. Run incremental training.
ANSWER : C,D
A. Use a ResNet model. Initiate full training mode by initializing the network with randomweights.
B. Use an Inception model that is available with the SageMaker image classificationalgorithm.
C. Create a .lst file that contains a list of image files and corresponding class labels. Uploadthe .lst file to Amazon S3.
D. Initiate transfer learning. Train the model by using the images of less common species.
E. Use an augmented manifest file in JSON Lines format.
ANSWER : C,D
A. The historical sensor data does not include a significant number of data points andattributes for certain time periods.
B. The historical sensor data shows that simple rule-based thresholds can predict cranefailures.
C. The historical sensor data contains failure data for only one type of crane model that isin operation and lacks failure data of most other types of crane that are in operation.
D. The historical sensor data from the cranes are available with high granularity for the last3 years.
E. The historical sensor data contains most common types of crane failures that thecompany wants to predict.
ANSWER : D,E
A. Use Amazon EMR Serveriess with PySpark.
B. Use AWS Glue DataBrew.
C. Use Amazon SageMaker Studio Data Wrangler.
D. Use Amazon SageMaker Studio Notebook with Pandas.
ANSWER : C
A. AWS Glue jobs
B. Amazon EMR cluster
C. Amazon Athena
D. AWS Lambda
ANSWER : A
A. IP Insights
B. K-nearest neighbors (k-NN)
C. Linear learner with a logistic function
D. Random Cut Forest (RCF)
E. XGBoost
ANSWER : D,E
A. The data scientist should obtain a correlated equilibrium policy by formulating thisproblem as a multi-agent reinforcement learning problem.
B. The data scientist should obtain the optimal equilibrium policy by formulating thisproblem as a single-agent reinforcement learning problem.
C. Rather than finding an equilibrium policy, the data scientist should obtain accuratepredictors of traffic flow by using historical data through a supervised learning approach.
D. Rather than finding an equilibrium policy, the data scientist should obtain accuratepredictors of traffic flow by using unlabeled simulated data representing the new trafficpatterns in the city and applying an unsupervised learning approach.
ANSWER : A
A. Image Classification
B. Optical Character Recognition (OCR)
C. Object Detection
D. Pose estimation
E. Image Generative Adversarial Networks (GANs)
ANSWER : C,D
A. Configure an S3 event notification that invokes an AWS Lambda function when newdocuments are created. Configure the Lambda function to create three SageMaker batchtransform jobs, one batch transform job for each model for each document.
B. Deploy all the models to a single SageMaker endpoint. Treat each model as aproduction variant. Configure an S3 event notification that invokes an AWS Lambdafunction when new documents are created. Configure the Lambda function to call eachproduction variant and return the results of each model.
C. Deploy each model to its own SageMaker endpoint Configure an S3 event notificationthat invokes an AWS Lambda function when new documents are created. Configure theLambda function to call each endpoint and return the results of each model.
D. Deploy each model to its own SageMaker endpoint. Create three AWS Lambdafunctions. Configure each Lambda function to call a different endpoint and return theresults. Configure three S3 event notifications to invoke the Lambda functions when newdocuments are created.
ANSWER : B
A. Convert current documents to SSML with pronunciation tags
B. Create an appropriate pronunciation lexicon.
C. Output speech marks to guide in pronunciation
D. Use Amazon Lex to preprocess the text files for pronunciation
ANSWER : B
A. Create an Amazon SageMaker notebook instance for pulling all the models fromAmazon S3 using the boto3 library. Remove the existing instances and use the notebook toperform a SageMaker batch transform for performing inferences offline for all the possibleusers in all the cities. Store the results in different files in Amazon S3. Point the web clientto the files.
B. Prepare an Amazon SageMaker Docker container based on the open-source multimodelserver. Remove the existing instances and create a multi-model endpoint inSageMaker instead, pointing to the S3 bucket containing all the models Invoke theendpoint from the web client at runtime, specifying the TargetModel parameter according tothe city of each request.
C. Keep only a single EC2 instance for hosting all the models. Install a model server in theinstance and load each model by pulling it from Amazon S3. Integrate the instance with theweb client using Amazon API Gateway for responding to the requests in real time,specifying the target resource according to the city of each request.
D. Prepare a Docker container based on the prebuilt images in Amazon SageMaker.Replace the existing instances with separate SageMaker endpoints. one for each citywhere the company operates. Invoke the endpoints from the web client, specifying the URL and EndpomtName parameter according to the city of each request.
ANSWER : B
A. Configure the AWS Data Exchange product as a producer for an Amazon Kinesis datastream. Use an Amazon Kinesis Data Firehose delivery stream to transfer the data toAmazon S3 Run an AWS Glue job that will merge the existing business data with theAthena table. Write the result set back to Amazon S3.
B. Use an S3 event on the AWS Data Exchange S3 bucket to invoke an AWS Lambdafunction. Program the Lambda function to use Amazon SageMaker Data Wrangler tomerge the existing business data with the Athena table. Write the result set back toAmazon S3.
C. Use an S3 event on the AWS Data Exchange S3 bucket to invoke an AWS LambdaFunction Program the Lambda function to run an AWS Glue job that will merge the existingbusiness data with the Athena table Write the results back to Amazon S3.
D. Provision an Amazon Redshift cluster. Subscribe to the AWS Data Exchange productand use the product to create an Amazon Redshift Table Merge the data in AmazonRedshift. Write the results back to Amazon S3.
ANSWER : B
A.Modify the HPO configuration as follows:
Select the most accurate hyperparameter configuration form this HPO job.
B.Run three different HPO jobs that use different learning rates form the following intervalsfor MinValue and MaxValue while using the same number of training jobs for each HPOjob:[0.01, 0.1][0.001, 0.01][0.0001, 0.001]Select the most accurate hyperparameter configuration form these three HPO jobs.
C.Modify the HPO configuration as follows:
Select the most accurate hyperparameter configuration form this training job.
D.Run three different HPO jobs that use different learning rates form the following intervalsfor MinValue and MaxValue. Divide the number of training jobs for each HPO job by three:[0.01, 0.1][0.001, 0.01][0.0001, 0.001]Select the most accurate hyperparameter configuration form these three HPO jobs.
ANSWER : C
A. Train a model by using a user-based collaborative filtering algorithm on AmazonSageMaker. Host the model on a SageMaker real-time endpoint. Configure an Amazon APIGateway API and an AWS Lambda function to handle real-time inference requests that theweb application sends. Exclude the items that the user previously purchased from theresults before sending the results back to the web application.
B. Use an Amazon Personalize PERSONALIZED_RANKING recipe to train a model.Create a real-time filter to exclude items that the user previously purchased. Create anddeploy a campaign on Amazon Personalize. Use the GetPersonalizedRanking APIoperation to get the real-time recommendations.
C. Use an Amazon Personalize USER_ PERSONAL IZATION recipe to train a modelCreate a real-time filter to exclude items that the user previously purchased. Create anddeploy a campaign on Amazon Personalize. Use the GetRecommendations API operationto get the real-time recommendations.
D. Train a neural collaborative filtering model on Amazon SageMaker by using GPU instances. Host the model on a SageMaker real-time endpoint. Configure an Amazon APIGateway API and an AWS Lambda function to handle real-time inference requests that theweb application sends. Exclude the items that the user previously purchased from theresults before sending the results back to the web application.
ANSWER : C
A. Perform incremental training to update the model. Activate Amazon SageMaker Model Monitor to detect model performance issues and to send notifications.
B. Use Amazon SageMaker Model Governance. Configure Model Governance toautomatically adjust model hyper para meters. Create a performance threshold alarm inAmazon CloudWatch to send notifications.
C. Use Amazon SageMaker Debugger with appropriate thresholds. Configure Debugger tosend Amazon CloudWatch alarms to alert the team Retrain the model by using only datafrom the previous several months.
D. Use only data from the previous several months to perform incremental training toupdate the model. Use Amazon SageMaker Model Monitor to detect model performanceissues and to send notifications.
ANSWER : A
A. Specificity
B. False positive rate
C. Accuracy
D. Fl score
E. True positive rate
ANSWER : D,E
A. A/B testing
B. Canary release
C. Shadow deployment
D. Blue/green deployment
ANSWER : C
A. Use Amazon SageMaker Ground Truth to sort the data into two groups named"enrolled" or "not enrolled."
B. Use a forecasting algorithm to run predictions.
C. Use a regression algorithm to run predictions.
D. Use a classification algorithm to run predictions
E. Use the built-in Amazon SageMaker k-means algorithm to cluster the data into twogroups named "enrolled" or "not enrolled."
ANSWER : A,D
A. Use a deep convolutional neural network (CNN) classifier with the images as input.Include a linear output layer that outputs the probability that an image contains a car.
B. Use a deep convolutional neural network (CNN) classifier with the images as input.Include a softmax output layer that outputs the probability that an image contains a car.
C. Use a deep multilayer perceptron (MLP) classifier with the images as input. Include alinear output layer that outputs the probability that an image contains a car.
D. Use a deep multilayer perceptron (MLP) classifier with the images as input. Include asoftmax output layer that outputs the probability that an image contains a car.
ANSWER : A
A. Exponential transformation
B. Logarithmic transformation
C. Polynomial transformation
D. Sinusoidal transformation
ANSWER : B
A. Use AWS Lambda to read and aggregate the data hourly. Transform the data and storeit in Amazon S3 by using Amazon Kinesis Data Firehose.
B. Use Amazon Kinesis Data Firehose to read and aggregate the data hourly. Transformthe data and store it in Amazon S3 by using a short-lived Amazon EMR cluster.
C. Use Amazon Kinesis Data Analytics to read and aggregate the data hourly. Transformthe data and store it in Amazon S3 by using Amazon Kinesis Data Firehose.
D. Use Amazon Kinesis Data Firehose to read and aggregate the data hourly. Transform the data and store it in Amazon S3 by using AWS Lambda.
ANSWER : C
A. Create an IAM role in the development account that the integration account andproduction account can assume. Attach IAM policies to the role that allow access to thefeature repository and the S3 buckets.
B. Share the feature repository that is associated the S3 buckets from the developmentaccount to the integration account and the production account by using AWS ResourceAccess Manager (AWS RAM).
C. Use AWS Security Token Service (AWS STS) from the integration account and theproduction account to retrieve credentials for the development account.
D. Set up S3 replication between the development S3 buckets and the integration andproduction S3 buckets.
E. Create an AWS PrivateLink endpoint in the development account for SageMaker.
ANSWER : A,B
A. An AWS KMS key policy that allows access to the customer master key (CMK)
B. A SageMaker notebook security group that allows access to Amazon S3
C. An 1AM role that allows access to the specific S3 bucket
D. A permissive S3 bucket policy
E. An S3 bucket owner that matches the notebook owner
F. A SegaMaker notebook subnet ACL that allow traffic to Amazon S3.
ANSWER : A,B,C
A. Use Amazon Textract for automatic processing. Use Amazon A2I with AmazonMechanical Turk for manual review.
B. Use Amazon Rekognition for automatic processing. Use Amazon A2I with a privateworkforce option for manual review.
C. Use Amazon Transcribe for automatic processing. Use Amazon A2I with a privateworkforce option for manual review.
D. Use AWS Panorama for automatic processing Use Amazon A2I with AmazonMechanical Turk for manual review
ANSWER : B
A. Switch to an instance type that has only CPUs.
B. Use a heterogeneous cluster that has two different instances groups.
C. Use memory-optimized EC2 Spot Instances for the training jobs.
D. Switch to an instance type that has a CPU GPU ratio of 6:1.
ANSWER : D
A. Use CPU utilization metrics that are captured in Amazon CloudWatch. Configure aCloudWatch alarm to stop the training job early if low CPU utilization occurs.
B. Use high-resolution custom metrics that are captured in Amazon CloudWatch. Configurean AWS Lambda function to analyze the metrics and to stop the training job early if issuesare detected.
C. Use the SageMaker Debugger vanishing_gradient and LowGPUUtilization built-in rulesto detect issues and to launch the StopTrainingJob action if issues are detected.
D. Use the SageMaker Debugger confusion and feature_importance_overweight built-inrules to detect issues and to launch the StopTrainingJob action if issues are detected.
ANSWER : C
A. Create an aggregated dataset by using the Pandas GroupBy function to get averagesales for each year for each store. Create a bar plot, faceted by year, of average sales foreach store. Add an extra bar in each facet to represent average sales.
B. Create an aggregated dataset by using the Pandas GroupBy function to get averagesales for each year for each store. Create a bar plot, colored by region and faceted by year,of average sales for each store. Add a horizontal line in each facet to represent averagesales.
C. Create an aggregated dataset by using the Pandas GroupBy function to get averagesales for each year for each region Create a bar plot of average sales for each region. Addan extra bar in each facet to represent average sales.
D. Create an aggregated dataset by using the Pandas GroupBy function to get average sales for each year for each region Create a bar plot, faceted by year, of average sales foreach region Add a horizontal line in each facet to represent average sales.
ANSWER : D
A. Instead of File mode, configure the SageMaker training job to use Pipe mode. Ingest thedata from a pipe.
B. Instead Of File mode, configure the SageMaker training job to use FastFile mode withno Other changes.
C. Instead Of On-Demand Instances, configure the SageMaker training job to use SpotInstances. Make no Other changes.
D. Instead Of On-Demand Instances, configure the SageMaker training job to use SpotInstances. Implement model checkpoints.
ANSWER : C
A. Use Amazon CloudWatch metrics to gain visibility into the SageMaker training weights,gradients, biases, and activation outputs. Compute the filter ranks based on the traininginformation. Apply pruning to remove the low-ranking filters. Set new weights based on thepruned set of filters. Run a new training job with the pruned model.
B. Use Amazon SageMaker Ground Truth to build and run data labeling workflows. Collecta larger labeled dataset with the labelling workflows. Run a new training job that uses thenew labeled data with previous training data.
C. Use Amazon SageMaker Debugger to gain visibility into the training weights, gradients,biases, and activation outputs. Compute the filter ranks based on the training information.Apply pruning to remove the low-ranking filters. Set the new weights based on the prunedset of filters. Run a new training job with the pruned model.
D. Use Amazon SageMaker Model Monitor to gain visibility into the ModelLatency metricand OverheadLatency metric of the model after the company deploys the model. Increasethe model learning rate. Run a new training job.
ANSWER : C
A. Use Amazon Athena to scan the data and identify the schema.
B. Use AWS Glue crawlers to scan the data and identify the schema.
C. Use Amazon Redshift to store procedures to perform data transformations
D. Use AWS Glue workflows and AWS Glue jobs to perform data transformations.
E. Use Amazon Redshift ML to train a model to detect fraud.
F. Use Amazon Fraud Detector to train a model to detect fraud.
ANSWER : B,D,F
A. Use AWS Panorama to identify celebrities in the pictures. Use AWS CloudTrail tocapture IP address and timestamp details.
B. Use AWS Panorama to identify celebrities in the pictures. Make calls to the AWSPanorama Device SDK to capture IP address and timestamp details.
C. Use Amazon Rekognition to identify celebrities in the pictures. Use AWS CloudTrail tocapture IP address and timestamp details.
D. Use Amazon Rekognition to identify celebrities in the pictures. Use the text detectionfeature to capture IP address and timestamp details.
ANSWER : C
A. Latent Dirichlet allocation (LDA)
B. Random Forest classifier
C. Neural topic modeling (NTM)
D. Linear support vector machine
E. Linear regression
ANSWER : A,C
A. Apply the Synthetic Minority Oversampling Technique (SMOTE) on the minority class inthe training dataset. Retrain the model with the updated training data.
B. Apply the Synthetic Minority Oversampling Technique (SMOTE) on the majority class in the training dataset. Retrain the model with the updated training data.
C. Undersample the minority class.
D. Oversample the majority class.
ANSWER : A
A. Use Amazon SageMaker script mode and use train.py unchanged. Point the AmazonSageMaker training invocation to the local path of the data without reformatting the trainingdata.
B. Use Amazon SageMaker script mode and use train.py unchanged. Put the TFRecorddata into an Amazon S3 bucket. Point the Amazon SageMaker training invocation to the S3bucket without reformatting the training data.
C. Rewrite the train.py script to add a section that converts TFRecords to protobuf andingests the protobuf data instead of TFRecords.
D. Prepare the data in the format accepted by Amazon SageMaker. Use AWS Glue orAWS Lambda to reformat and store the data in an Amazon S3 bucket.
ANSWER : B
A. Attach the AmazonAthenaFullAccess AWS managed policy to the user identity.
B. Include a policy statement for the data scientist's 1AM user that allows the 1AM user toperform the sagemaker: lnvokeEndpoint action,
C. Include an inline policy for the data scientist’s 1AM user that allows SageMaker to readS3 objects
D. Include a policy statement for the data scientist's 1AM user that allows the 1AM user toperform the sagemakerGetRecord action.
E. Include the SQL statement "USING EXTERNAL FUNCTION ml_function_name" in theAthena SQL query.
F. Perform a user remapping in SageMaker to map the 1AM user to another 1AM user thatis on the hosted endpoint.
ANSWER : B,C,E